

Product Data Sheet

LTH 1922 LDPE- Low Density Polyethylene

Product Description

LTH 1922 has been manufactured using SABTEC licensed technology

General Information

Status: Commercial: Active

Application: LTH 1922 is specially developed for applications that require a good balance between flow properties and mechanical properties, e.g. toys, household articles, clamping lids.

Additive: Antioxidant

Typical Properties	Typical Value	Unit	Test Method
Polymer Properties			
MFI (190 °C/2 .16 Kg)	22	dg/min	ISO 1133
MFI (190 °C /5 Kg)	75	dg/min	ISO 1133
MVR (190 °C /2 .16 Kg)	29	ml/10min	ISO 1133
MVR (190 °C /5 Kg)	98	ml/10min	ISO 1133
Density	919	Kg/m³	ISO 1183 (A)
Thermal Properties			
Heat deflection temperature at 0.45MPa (HDT/B)	39	°C	ISO 75
Vicat softening temperature at 10N (VST/A)	82	°C	ISO 306
Melting Point	105	°C	DIN 53765
Enthalpy change	104	j/g	DIN 53765
Mechanical properties			
Stress at yield	8	Мра	ISO 527/2
Stress at break	7	Мра	ISO 527/2
Strain at break	400	%	ISO 527/2
Tensile modulus	175	Мра	ISO 527/2
Creep modulus (After 1 hour)	80	Мра	ISO 899
Creep modulus (After 1000 hour)	45	Мра	ISO 899
Notched Izod at +23°C	42	KJ/m²	ISO 180 A
Notched Izod at -30 °C	5	KJ/m²	ISO 180 A

Typical Properties	Typical Value	Unit	Test Method
Notched Tensile impact strength	86	KJ/m²	ISO 8256/1B
Elongation at break	8.4	%	ISO 8256/1B
Maximum Tension	16	Мра	ISO 8256/1B
Hardness Shore D	45	-	ISO 868
Ball indentati <mark>on te</mark> st			
Applied load	49	N	ISO 2039-1
Ball indentation hardness	16	Мра	ISO 2039-1
ESCR	3	h	SABTEC Method

Packaging: Supplied in pellet form and can be packaged in 25kg bags, 1ton semi bulk or 17 ton bulk

Food packaging: The above mentioned grade meets the relevant requirements of plastics directive 2002/72/EC (06-08-2002) and its amendments till directive 2008/39EC relating to plastic materials and articles intended to come into contact with foodstuffs

Pharmaceutical Application: The above mentioned grade meets the requirements of the European pharmacopeia version 6 section 3.1.5 for pharmaceutical application..

Conveying: Conveying equipment should be designed prevent accumulation of fines and dust particles can, under certain conditions, pose an explosion hazard. We recommend that the conveying system used:

- 1. be equipped with adequate filters
- 2. is operated and maintained in such a manner to ensure no leaks develop
- 3. that adequate grounding exists at all times
 We further recommended that good housekeeping will practiced throughout the facility

Storage: As ultraviolet light may cause a change in the material, all resins should be protected from direct sunlight and/or heat during storage. The storage location should also be dry, dust Free and the ambient temperature should not exceed 50°C. It is also advisable to process polyethylene resins (in pelletized or powder from) within 6 months after delivery, this because also excessive aging of polyethylene can lead to a deterioration in quality

Handling: Minimal protection to prevent possible mechanical or thermal injury to the eyes. Fabrication areas should be ventilated to carry away fumes or vapors.

Combustibility: Polyethylene resins will burn when supplied adequate heat and oxygen. They should be handled and stored away from contact with direct flames and/or other ignition sources .in burning; polyethylene resins contribute high heat and may generate a dense black smoke. Fires can be extinguished by conventional means with water and mist preferred. In enclosed areas, fire fighters should be provided with self contained breathing apparatus